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 RATIONALIZING POLICY FUNCTIONS BY

 DYNAMIC OPTIMIZATION

 BY TAPAN MITRA AND GERHARD SORGER1

 We derive necessary and sufficient conditions for a pair of functions to be the optimal

 policy function and the optimal value function of a dynamic maximization problem with

 convex constraints and concave objective functional. It is shown that every Lipschitz

 continuous function can be the solution of such a problem. If the maintained assumptions

 include free disposal and monotonicity, then we obtain a complete characterization of

 all optimal policy and optimal value functions. This is the case, e.g., in the standard

 aggregative optimal growth model.

 KEYWORDS: Dynamic optimization, optimal growth theory, rationalizability.

 1. INTRODUCTION

 THIS PAPER STUDIES THE SET OF SOLUTIONS of dynamic optimization problems of

 the form

 + 00

 V(x) = sup E p'U(X,, Xt
 t=0

 subject to (xt,xt+1) E and xo =x.

 Here, p is the discount factor, U is the utility function, Q describes the
 transition possibility set, and x is the initial state of the system. Models of this
 form arise in many different areas of economics, notably in optimal growth
 theory (see Stokey and Lucas (1989) and McKenzie (1986)). Under standard
 convexity and continuity assumptions one can show that the optimal paths of
 this problem (starting at any initial state x) are characterized by a continuous

 function h which maps the state at time t, xt, to its unique optimal successor
 state xt+ = h(xt). The solution of the above problem is therefore compactly
 described by the pair (h, V) consisting of the optimal policy function h and the
 optimal value function V, respectively. Conversely, one can say that the pair
 (h, V) is rationalized by the dynamic optimization problem (l], U, p).

 The goal of this paper is to characterize the set of all pairs (h, V) that can be
 rationalized by a problem (Q, U, p) satisfying the standard convexity and conti-
 nuity assumptions. Similar characterizations of the solution sets for other
 standard models in economic theory have gained considerable attention in the
 literature. The most prominent examples are probably the characterization of
 individual demand functions by the strong axiom of revealed preference (see
 Samuelson (1938, 1947), Houthakker (1950), and Uzawa (1960)) and the charac-

 tSupport from the Austrian Science Foundation under Grants J01179-SOZ and P10850-SOZ
 is acknowledged. We thank the co-editor and two anonymous referees of this journal for their

 constructive remarks.
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 376 T. MITRA AND G. SORGER

 terization of market excess demand functions by continuity, homogeneity of

 degree 0, and Walras' law (see Sonnenschein (1973, 1974), Mantel (1974), and

 Debreu (1974)).

 As for dynamic optimization problems of the form described above, previous
 research has focussed entirely on the characterization of the set of optimal

 policy functions h without considering the optimal value function V as part of

 the solution. From the maximum theorem it follows that every optimal policy
 function h has to be continuous. The first step towards a sufficient rationaliz-
 ability condition was taken by Boldrin and Montrucchio (1986) who showed that
 any twice continuously differentiable function can be an optimal policy function.

 Neumann et al. (1988) slightly relaxed this condition by proving that any
 differentiable function with a Lipschitz continuous derivative can be an optimal

 policy function.2 In the same paper, the authors also provided an example of an
 optimal policy function that is not Lipschitz continuous. Hewage and Neumann
 (1990), finally, showed that not all continuous functions can be optimal policy

 functions in a dynamic optimization problem satisfying the standard assump-

 tions.3 To summarize, the state of knowledge is that every optimal policy
 function is continuous, that there are continuous functions that are not rational-

 izable, that Lipschitz continuity is not necessary for rationalizability, and that

 differentiability with a Lipschitz continuous derivative is sufficient for rationaliz-
 ability.

 In the present paper we present conditions for the rationalizability of a pair

 (h, V) consisting of both the policy and the value function. The necessary and
 sufficient conditions that we derive are very close to each other. The necessary
 condition requires that both h and V are continuous, V is strictly concave, and,
 for every state x at which there exists a price (subgradient) p supporting V at x,
 one can also find a price q supporting V at h(x) such that the inequality

 V(h(x)) - V(h(y)) + q[h(y) - h(x)]

 < (1/p)[V(x) - V(y) +p(y -x)]

 holds for all states y. The sufficient condition requires in addition that V can be
 extended as a concave function to an open set containing the state space of the

 model. The above inequality is a joint condition on h and V and it says that

 either the distance between h(x) and h(y) cannot be too large as compared to
 the distance between x and y (which is related to Lipschitz continuity of h) or
 that the curvature of V between h(x) and h(y) has to be very small as
 compared to the curvature of V between x and y.

 Using our tight conditions on the pair (h, V) we are able to reconsider the
 question of rationalizability of h and answer it in a much more satisfying way

 2The analysis in Neumann et al. (1988) is restricted to the case of one-dimensional state spaces.
 See Montrucchio (1994) for a proof of this result in general multi-sector models.

 3This result has been replicated under various assumptions by Sorger (1995) and Mitra (1996a).
 They all involve continuous functions which are infinitely steep at an interior fixed point.
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 DYNAMIC OPTIMIZATION 377

 than it was possible before. We considerably improve the results by Boldrin and

 Montrucchio (1986), Neumann et al. (1988), and Montrucchio (1994) by showing

 that any Lipschitz continuous function can be an optimal policy function.

 Coming back to the rationalizability problem for pairs (h, V) we note that the

 only difference between the necessary condition and the sufficient one is that in

 the latter we require that V can be extended as a concave function to some open

 set containing the state space. We demonstrate that one can dispense with this

 additional requirement if one replaces the continuity assumption on the utility

 function U by the assumption of boundedness and upper semi-continuity and if

 one assumes free disposal and certain monotonicity properties for l] and U. In

 this slightly different framework, the rationalizability condition mentioned above

 is augmented by the monotonicity of V and the nonnegativity of the support

 prices p and q. We show that with these modifications the condition is both

 necessary and sufficient for the existence of a dynamic optimization problem

 (U], U, p) which is solved by (h, V). A particular example that fits this framework

 is the standard aggregative model of optimal growth.

 Section 2 formulates the dynamic optimization problems under consideration.

 In Section 3 we state the general rationalizability conditions and prove that
 every Lipschitz continuous function can be rationalized. Section 4 considers the

 modified set of assumptions and derives a necessary and sufficient rationalizabil-
 ity condition in this framework. Section 5 presents concluding remarks.

 2. DYNAMIC OPTIMIZATION PROBLEMS

 Time is measured in discrete periods t E {O, 1,2, ... }. At each time t the state

 of the economic system is described by a vector xt EX where the state space
 X c R is a compact and convex set with nonempty interior. The dynamic

 optimization problem consists in finding

 + 00

 (1) V(x = sup E, ptU(xt, xt+ l)
 t=0

 where the supremum is taken over the set of all sequences (xt)'2" satisfying the
 constraints

 (2) (xt,xt+1) E l], t o{O,1,2,...},

 (3) xo=x.

 Here, p is the discount factor, U is the utility function, l] is the constraint set,
 x EX is the initial state, and V is the optimal value function. We now discuss
 the assumptions that will be used in this paper (except for Section 4 where we
 introduce a different set of assumptions).
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 378 T. MITRA AND G. SORGER

 Al: Q c X x X is a closed and convex set such that the x-section f2 =

 {y c X I (x, y) c Q} is nonempty for all x c X. The set U x E x has nonempty
 interior.4

 A2: U: Q > R is a continuous and concave function.

 A3: pcE-(0, 1).

 We shall refer to the dynamic optimization problem (l)-(3) as problem
 (U, U, p). Note that we do not include the initial state x in the description of
 the problem. Thus, problem (U, U, p) requires finding the optimal state trajecto-
 ries from any initial state x c X. Assumptions Al-A3 are standard assumptions
 in the relevant literature and they imply that the Bellman equation

 V(x) = max{U(x,y) + pV(y) Iy C f2J

 holds for all x c X. Moreover, a path (xt)j+ j satisfying (2) and (3) is optimal if

 and only if V(xt) = U(xt, xt+ ) + pV(xt+ 1) holds for all t E{ (0 1, 2... }. How-
 ever, optimal paths for (1)-(3) need not be unique. To ensure that optimal paths
 are unique one has to add strict concavity.

 A4: The optimal value fiunction V is strictly concave.

 If A1-A4 hold, then the following is true. For evely x c X there exists exactly

 one y c !2x such that V(x) = U(x, y) + pV(y). In other words, there exists a
 unique maximizer on the right-hand side of the Bellman equation. Let h(x)
 denote this maximizer, that is, h(x) = argmax{U(x, y) + pV(y) Iy C f2j. The
 function h: X}- X defined in that way is called the optimal policy function of
 the optimization problem (U, U, p). It maps any state x c X to its optimal
 successor state h(x). Optimal paths are uniquely determined as the trajectories

 of the difference equation xt+ I = h(xt) with (3) as the initial condition. We shall
 call the pair (h, V) the solution of the optimization problem (U, U, p) or we
 shall say that (U, U, p) rationalizes (h, V). Sometimes we shall restrict attention
 to the optimal policy function by saying that (U, U, p) rationalizes h. The
 following proposition summarizes necessary and sufficient optimality conditions
 for (U, U, p) under Assumptions A1-A4. For a proof we refer to Chapter 4 in
 Stokey and Lucas (1989).

 PROPOSITION 1: Let (U, U, p) be an optimization problem on the state space X
 satisfying A 1-A 3. (a) If problem (U, U, p) satisfies A4 and (h, V) is its solution,
 then the following conditions hold.

 Cl: The fuinction h: X X X is continuous and satisfies h(x) C UA for all x c X.
 C2: The function V: X - R is continuous and strictly concave.

 4The assumption that U , x Qx has nonempty interior in X is satisfied whenever Q2 has
 nonempty interior in X x X. The converse is not true as can be seen by simple examples.
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 DYNAMIC OPTIMIZATION 379

 C3: For all (x, y) c Q with y = h(x) it holds that

 (4) V(x) > U(x, y) + pV(y),

 (5) V(x) = U(x, h(x)) + pV(h(x)).

 (b) Conversely, if there exists a pair of ftnctions (h, V) satisfying C1-C3, then it
 follows that (Q, U, p) satisfies A4 and that (h, V) is its solution.

 Conditions Cl and C2 show that the solution of an optimization problem

 satisfying A1-A4 always consists of a pair of continuous functions. The purpose
 of the present paper is to characterize in more detail the set of all pairs (h, V)
 that can be rationalized by such optimization problems. Some of our results
 involve a concavity assumption that is based on the notion of a-concavity and

 a-convexity. If a is any real number, then V is a-concave if x V(x) +
 (a/2)IIx 12 is a concave function. Analogously, we say that V is a-convex if

 x F > V(x) - (a/2)Jx 112 is convex.

 A5: There exist positive real numbers a and /3 such that V is a-concave and

 (- ,3)-convex.

 It is obvious that this assumption is stronger than A4. Sufficient conditions for

 a-concavity of V are stated, e.g., in Montrucchio (1987). Sufficient conditions

 for (- ,8)-convexity of V are harder to obtain and would certainly involve non-
 trivial joint restrictions on both U and Q. In many cases (especially in optimal
 growth theory) the optimization problem (Q, U, p) is also assumed to satisfy
 the following monotonicity assumption.

 A6: If x <?x, then Q. c U,. The ftnction x - U(x, y) is nondecreasing and the
 futnction y - U(x, y) is nonincreasing.

 It is known that an optimization problem (U, U, p) which satisfies A1-A4 and
 A6 has a nondecreasing optimal value function V (see, e.g., Theorem 4.7 in
 Stokey and Lucas (1989)).

 3. CONDITIONS FOR RATIONALIZABILITY

 Let X denote the state space and let p be a number in (0,1). In the first
 theorem we shall demonstrate that the following condition is necessarily satis-
 fied if (h, V) is the solution of an optimization problem (U, U, p) satisfying
 A1-A4.

 5For a discussion of these concepts we refer to Vial (1983). Some authors (e.g. Montrucchio
 (1994)) use the term concavity-,B instead of (- ,)-convexity.
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 R( p): The functions h: X -* X and V: X -> R are continuous and V is strictly
 concave. For all x EX such that d1V(x) : 0 there exist px E- d1(x) and qx E
 VO(h(x)) such that

 (6) V(h(x)) - V(h(y)) + qx[h(y) - h(x)]

 < (1/p)[V(x) - V(y) +pX(y -X)]

 holds for ally E X.6

 Note that the qualification 8 V(x) : 0 in condition R( p) holds necessarily for
 all x E int X but may or may not hold at boundary points of the state space.

 THEOREM 1: Let X c R " be a compact and convex set with nonempty interior
 and h: X ->X and V: X -> R two given functions. If the pair (h,1V) can be
 rationalized by a dynamic optimization problem (UQ, U, p) on X such that Assump-
 tions A1-A4 hold, then (h, V) must satisfy R( p).

 PROOF: Assume that (h, V) is the solution of (U, U, p). Continuity of h and V

 and strict concavity of V are implied by Proposition la. It remains to prove (6).

 Consider any state x E X and any subgradient px E 8V(x). By a well known
 separation argument there exists qx E- 8 V(h(x)) such that

 U(x, h(x)) + pqxh(x) -pxx ? U(y, z) + pqxz -pxy

 for all (y, z) E U.7 For z = h(y) one gets

 U(x, h(x)) + pqxh(x) - px x U(y, h(y)) + pqxh(y) -pxy.

 From Proposition la it follows that U(x, h(x)) = V(x) - pV(h(x)) and
 U(y, h(y)) = V(y) - pV(h(y)). Substituting this into the above inequality and
 rearranging terms leads to (6). Q.E.D.

 To explain the basic idea of the proof of Theorem 1 in simple geometric terms
 it is convenient to assume that (h, V) is rationalized by a model (U, U, p) with

 a continuously differentiable utility function U and that h(x) G int Ux for all
 x E X. In this case the optimal value function V is also continuously differen-
 tiable on the interior of X and the first order and envelope conditions

 (7) U1(x, h(x)) = V'(x), U9(x, h(x)) = - pV'(h(x))

 must hold (see Theorem 4.11 in Stokey and Lucas (1989)). Consider any pair
 (x, y) of different states. From (5) we know that

 (8) U(x, h(x)) = V(x) - pV(h(x)), U(y, h(y)) = V(y) - pV(h(y)).

 6d V(z) denotes the subdifferential of V at z, that is, 9 V(z) = {p E RI' I V(y) < V(z) +p(y - z)

 for all y e 1R".

 7The argument was first presented by Weitzman (1973) using assumptions that are different from

 ours. A proof that is valid under the present assumptions can be found in McKenzie (1986,

 pp. 1288-1289).
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 DYNAMIC OPTIMIZATION 381

 Concavity of U implies that U(y, h(y)) lies below the tangent hyperplane that

 supports U at the point (x, h(x)). Using (7) and (8) this property translates into

 V(y) - pV(h(y)) < V(x) - pV(h(x)) + V'(x)(y - x) - pV'(h(x))[h(y) - h(x)],
 which is equivalent to (6) under the assumption that V is differentiable. In the

 case where V is not differentiable the first order and envelope conditions (7)

 need not hold in this form and one has to replace the usual gradients by

 subgradients and to restrict the validity of (6) to those pairs (x, y) E Xx X for
 which V(x) is nonempty.

 To interpret condition R( p) it is useful to define dv(x, y) = V(x) - V(y) +

 px(y -x). With this notation R( p) can be restated as dv(h(x), h(y)) <
 (1/p)dv(x, y). Now note that strict concavity of V implies dv(x, y) > 0 for all
 (x, y) EXxX with x y and dv(x, x) = 0 for all x e X. Although d>, is not a
 metric (in general, it is neither symmetric nor does it satisfy the triangle

 inequality), one may think of dv(x, y) as measuring the distance between the
 states x and y. For example, it is easily seen that for z 0 the function

 g(A) = dv(x, x + Az) is strictly convex, strictly increasing, and nonnegative with
 respect to A E [0, + oo), and attains its unique minimum g(O) = 0. Note that, as A
 increases, the point x+ Az moves away from x in the direction z and,

 consequently, the 'distance' dv(x, x + Az) increases. However, the value of
 dv(x, y) depends also on the curvature of V. For example, if V is twice
 continuously differentiable, then one has

 dv(x, y) = - (1/2)(y - x) TV"(z)(y - x)
 for some point z on the line segment joining x and y. This shows that if the
 slope of V changes sharply as one goes from x to y (which means that the

 eigenvalues of V"(z) are very small), then dv(x,y) will be large. Keeping in
 mind the "distance and curvature" interpretation of dv(x, y), condition R( p)
 says that either h(x) is not too far away from h(y) as compared to the distance
 between x and y, or the curvature of V between h(x) and h(y) is small as
 compared to the curvature of V between x and y.

 We now turn to the following sufficient condition for the rationalizability of a
 pair (h, V).

 R* ( p): The functions h: X > X and V: X,> R are continuous and V is strictly
 concave. There exists an open and convex set X* containing X and a concave

 function V*: X* -* R which coincides with V on X such that the following is true:

 for every x E X there exist subgradients px E d V* (x) and qX E d V* (h(x)) such that
 (6) holds for all y E X.

 Note that dV*(x) and dV*(h(x)) are nonempty because both x and h(x)
 are elements of X and, thus, in the interior of X*. The difference between
 R*( p) and R( p) is that in the former we require that V can be extended as a
 concave function to an open set containing X. Thereby, we rule out the

 existence of states x E X at which the subdifferential d V* (x) becomes empty or
 unbounued.
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 382 T. MITRA AND G. SORGER

 THEOREM 2: Let X c R " be a compact and convex set with nonempty interior

 and h: X - X and V: X 8 R two given functions. If there exists p c (0, 1) such
 that condition R* ( p) is satisfied, then one can rationalize (h, V) by a dynamic
 optimization problem (f12, U, p) satisfying A1-A4. If, in addition, V is nondecreas-
 ing, then (f12, U, p) can be chosen such that A6 holds.

 PROOF: Let (h, V) be given such that R*( p) holds. To construct an optimiza-

 tion problem (Q, U, p) which rationalizes (h, V) we proceed in three steps. First

 we construct (12, U, p) and prove that Assumptions Al-A3 are satisfied. Then

 we verify conditions Cl-C3 of Proposition 1. The rationalizability of (h, V) and
 the validity of A4 are then an immediate consequence of Proposition lb. Finally,
 we show that A6 is satisfied if V is nondecreasing.

 STEP 1: Let ?2 = X x X; then Assumption Al is satisfied. For every z c X

 define the function F,: RFn x RFk -* R by

 (9) Fj(x, y) = V(z) - pV(h(z)) +p,(x - z) - pq,[y - h(z)]

 where pz and qz are the subgradients of V* whose existence is ensured by
 R* ( p). Moreover, define U(x, y) = inf{Fz(x, y) I z E X}. From the fact that X is
 a compact subset of the interior of X* it follows that Fz(x, y) is uniformly
 bounded from below on any compact set A c R' x R", that is, there exists a
 finite number M(A) such that Fz(x,y) ?M(A) for all z cX and all (x,y) cA.
 Obviously, this implies that U is a finite function, that is, U: R n X R' R.
 Moreover, each of the functions Fz is affine so that U (as the infimum of a
 family of affine functions) is a concave function. Since U is finite and concave on
 R" x R" it follows that U is continuous. We have therefore shown that A2

 holds. Assumption A3 holds trivially.

 STEP 2: Continuity of h and V as well as strict concavity of V hold by

 assumption R*( p). The property h(x) (= 2x for all x c X holds by definition
 of 12. Thus Cl and C2 of Proposition 1 are satisfied. It remains to verify C3.

 Let x c X be given. For any y c f2x such that y 0 h(x) we have

 U(x, y) < Fx(x, y) = V(x) - pV(h(x)) - pq,[y - h(x)]

 < V(x) - pV(y).

 Here, the first step follows from the definition of U, the second step from the

 definition of Fx, and the third one from strict concavity of V and y 0 h(x). Thus,
 (4) is verified. Now observe that for all x c X we have

 (10) V(X - p V(h(x)) = Fx (x, h (x)).

 Condition R* ( p) implies

 V(h(z)) - V(h(x)) + qz[h(x) - h(z)]

 < (l/p)[ V(z) - V(x) +pz(x -z)]
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 DYNAMIC OPTIMIZATION 383

 for all z (=X. Obviously, this inequality is equivalent to

 (11) F, (x, h (x)) < F, (x, h(x)).

 Since z cX was arbitrary we obtain from (10) and (11) that V(x) - pV(h(x)) =

 Fx(x, h(x)) = inf{F,(x, h(x)) I z c X} = U(x, h(x)). Thus, (5) is verified and
 Proposition 1 yields the result.

 STEP 3: To see that A6 can be satisfied whenever V is nondecreasing observe

 that monotonicity of V implies that for all z E X the subgradients p, and q, are
 nonnegative. Thus, Fz(x, y) defined in Step 1 is nondecreasing in x and nonin-
 creasing in y for all z. Obviously, these properties are inherited by U(x, y).

 Q.E.D.

 The crux in the constructive proof of Theorem 2 is finding the function U. In

 order to explain the geometric intuition of this step, first note that for any model

 (12, U, p) which possibly rationalizes (h, V) it must hold that U(x, h(x)) =
 V(x) - pV(h(x)) (see Equation (5)). Thus, the value of the utility function is
 determined by (h, V) for every point on the graph of h. If U were differentiable

 and h(x) c int !2x, then the first order and envelope conditions (7) would hold
 and the tangent hyperplanes of U at any point on the graph of h would also be
 determined by (h, V). The basic idea of the proof of Theorem 2 is to define the
 graph of U as the envelope of all these hyperplanes. The main technical

 difficulty with this approach is that V cannot be assumed to be differentiable

 and, therefore, the first order and envelope conditions (7) may not hold.
 Therefore, we have to replace the derivatives of V by subgradients and we have

 to assume that V can be extended as a concave function to some open set

 containing X. Whereas using subgradients does not introduce any gap between
 the necessary condition R( p) and the sufficient condition R* ( p), the extend-
 ability of V does. In this regard it is worth pointing out that R* ( p) is certainly
 not necessary for the rationalizability of (h, V) since we know that there are
 examples of rationalizable pairs (h, V) for which V cannot be extended as a
 concave function to an open set containing X. This is the case, for example, if V
 is infinitely steep at the boundary of X. In Section 4 we study what can be said if

 one drops the additional assumption of extendability of V.

 Perhaps the most interesting consequence of Theorem 2 is that every Lip-

 schitz continuous function h can be the optimal policy function of a dynamic
 optimization problem satisfying AI-A6.

 THEOREM 3: Let X c R' be a compact and convex set with nonempty interior
 and let h: X *> X be a Lipschitz continuous function with Lipschitz constant L. For
 every p < 1/L2 there exists an optimization problem (f12, U, p) satisfying A1-A6
 which rationalizes h.

This content downloaded from 216.165.95.159 on Thu, 29 Aug 2019 18:33:18 UTC
All use subject to https://about.jstor.org/terms



 384 T. MITRA AND G. SORGER

 PROOF: To prove the result define the quadratic function V: Rl l > 1R

 (12) V(x) = yen x- (a/2)11X112,
 where a and y are positive real numbers and e,2 = (1, 1,... ) R . Because X
 is compact, V is strictly increasing on X provided y is chosen sufficiently large.

 Moreover, V is both a-concave and (- a )-convex and it is continuously differ-
 entiable on FR'. These properties imply that A5 (and, hence, A4) holds and that

 one may choose V* = V in condition R* ( p). Using the property V(x) = {Px}
 with Px = ye, - ax one obtains

 V(x) - V(y) +px(y -x) = yenx - ( a/2)11x112 - _ye,y

 + (a/2)11y112 + (yen - ax)(y -x)

 = (a/2)IIx -y112.

 In a similar way (using the fact that d V(h(x)) = {qx} with qx = yen - ah(x)) one
 can show that

 V(h(x)) - V(h(y)) + qx[h(y) - h(x)] = (a/2) 11 h(x) - h(y) 112.

 Condition (6) is therefore equivalent to Ilh(x) - h(y)112 < (1/p)II x-y112. This
 inequality holds for all (x, y) ( X x X if the discount factor p is chosen such

 that p < 1/1L2. The result is therefore an immediate consequence of Theorem 2.
 Q.E.D.

 The converse of this theorem is well known: every dynamic optimization
 problem satisfying Al-A5 has a Lipschitz continuous optimal policy function
 (see, e.g., Montrucchio (1987, 1994) or Sorger (1994, 1995) for proofs under
 various assumptions). For this implication, however, the strong concavity as-
 sumption A5 is crucial, since there are optimal policy functions of dynamic
 optimization problems satisfying A1-A4 (but not A5) that are not Lipschitz
 continuous (e.g. Example 2 in Neumann et al. (1988)). We illustrate the
 application of Theorem 2 by providing an example in which the optimal policy
 function does not have finite steepness even at an interior fixed point.

 EXAMPLE 1: Let X= [-1,1], and define the pair (h, V) by

 h(x) = if x <O and V(x) =2x-x if x<O0 -\U7 if x> O, \2x ~x2 if X>O0.
 Note that h is continuous but not Lipschitz continuous because it has slope - oo
 at its unique fixed point x = 0 E int X. Note also that V is continuous, strictly
 concave, and strictly increasing. We shall now show that condition R* ( p) is
 satisfied for all p < 1/3. To this end first note that V is continuously differen-
 tiable on all of R such that the subgradients in (6) may be replaced by the usual
 derivatives and V* may be chosen to be equal to V. We have to consider four
 different cases.
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 CASE 1 (x < 0 and y < 0): In this case we have h(x) = h(y) = 0 such that the

 left-hand side of (6) equals 0. Thus, (6) holds independently of p.

 CASE 2 (x < 0 and y > 0): In this case we have h(x) = 0 and h(y) = - <0.
 This yields V(x) - V(y) + V'(x)(y -x) = 3x4 - 4x3y +y2 and V(h(x)) -
 V(h(y)) + V'(h(x))[h(y) - h(x)] =y2. Thus, (6) is satisfied provided that p <
 (3x4 - 4x3y +y2)/y2. Because x < 0 and y > 0, the right-hand side of this
 inequality is greater than or equal to (3x4 ?y2)/y2 ? 1 and we conclude that (6)
 holds in this case for all p E (0, 1).

 CASE 3 (x> 0 and y < 0): In this case we have h(x)= - < 0 and

 h(y) = 0. This yields V(x) - V(y) + V'(x)(y -x) =x2 - 2xy +y4 and V(h(x)) -
 V(h(y)) + V'(h(x))[h(y) - h(x)] = 3x2. Thus, (6) is satisfied provided that p <
 (x2- 2xy +y4)/(3x2). Because x> 0 and y < 0, the right-hand side of this
 inequality is greater than or equal to (X2 +y4)/(3X2) ? 1/3 and we conclude
 that (6) holds in this case for all p E (0, 1/3].

 CASE 4 (x > 0 and y > 0): In this case we have h(x) = - <0 and h(y) =

 - V < O. This yields V(x) - V(y) + V'(x)(y-x) = (x _y)2 and V(h(x)) -
 V(h(y)) + V'(h(x))[h(y) - h(x)] = 3X2 - 4x xy +y2. Thus, (6) is satisfied pro-

 vided that p < (x -y)2/(3x2 - 4x xy +y2). Because both x and y are positive
 and x 0 y we have

 (x-y)2 _ (x/. -V)2(X y ?y)

 3x2 - 4xy +y2 -(T )2(3X + 2 ?) +Y)

 2x 2 1

 3x + 2A/y +y 3 3

 Thus, (6) holds in this case for all p E (0, 1/3].
 These results prove that (h, V) satisfies R* ( p) whenever p E (0, 1/3] and we

 conclude from Theorem 2 that h can be rationalized by an optimization
 problem satisfying A1-A4 and A6. Q.E.D.

 4. A COMPLETE CHARACTERIZATION

 We have already pointed out that the gap between the necessary condition
 R( p) and the sufficient condition R* ( p) arises because the optimal value
 function may have empty subdifferential at boundary points of the state space.
 In a first attempt to prove Theorem 2 with condition R* ( p) replaced by

 condition R( p), one may be led to define U(x, y) as the infimum of F,(x, y)
 where z ranges only over the interior of X (see (9) for the definition of
 Fz(x, y)). It is possible to show that this leads indeed to a utility function U that
 is bounded, concave, and upper semi-continuous but not necessarily continuous
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 on the closed convex hull of the graph of h. Without continuity of U, however,

 the dynamic programming results stated in Proposition 1 need not hold. In the

 present section we introduce a different set of assumptions that does not include

 continuity of U but still ensures that the conditions stated in Proposition 1 hold.

 Throughout this section we assume that the state space X is a nonempty,

 compact, and convex subset of R such that the following is true: if xeX,
 x E k+, and x <x, then x EX.8

 B1: ?2 cX x X is a closed and convex set containing (0,0) such that the

 following is true: if (x, y) E ?2 x E X, x >x, and 0 <- <?y, then (x, y) ? f2.

 B2: U: ?2- > R is a bounded, concave, and upper semi-continuous function

 such that the following is true: if (x,y) E ?2, x -X, x2x and 0 - < y, then
 U(x-, y) 2 U(x, y).

 The essential difference between these assumptions and the corresponding

 Assumptions Al and A2 is that U is merely assumed to be bounded and upper
 semi-continuous instead of continuous, and that ?2 and U are required to satisfy
 free disposal and monotonicity properties.9 It is worth pointing out that

 U(xt, xt+ ) is often interpreted as the "reduced" utility obtained by maximizing
 a "primitive" utility function u(ct) over consumption ct subject to a given capital
 stock at the beginning of the period, xt,,and a fixed target capital stock at the
 end of the period, xt+ . In this case it is possible to prove that U is upper
 semi-continuous, but it requires additional assumptions to justify continuity of U
 (see Dutta and Mitra (1989a)). This shows that in certain cases Assumptions Bi
 and B2 may be more appropriate than Assumptions Al and A2.

 It has been proved by Dutta and Mitra (1989b) that the optimal value
 function V is well defined, continuous, and concave and that the Bellman
 equation remains true if Al and A2 are replaced by Bi and B2. In addition, it
 follows that V is nondecreasing. If one adds A4 then Proposition 1 can also be
 established with Al and A2 replaced by Bi and B2. For the purpose of later
 reference we state this as a formal result. For a proof we refer to Dutta and

 Mitra (1989b).

 PROPOSITION 2: Let (?2, U, p) be an optimization problem on X satisfying B1,
 B2, and A3. (a) If problem (D,, U, p) satisfies A4 and (h, V) is its solution, then
 the following conditions hold:

 Cl: The function h: X - X is continuous and satisfies h(x) E fx for all x E X.
 C2: The function V: X,-> R is continuous, strictly concave, and nondecreasing.
 C3: For all (x, y) E U and y 0 h(x) conditions (4) and (5) hold.

 (b) Conversely, if there exists a pair of functions (h, V) satisfying Cl-C3, then it
 follows that (U, U, p) satisfies A4 and that (h, V) is its solution.

 8Such a set is called comprehensive. Note that 0 E X holds for every comprehensive set X.
 9Note that B1 and B2 imply A6 but that A6 does not contain any free disposal assumption.
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 The only difference between the conclusions of Proposition 1 and Proposi-

 tion 2 is that condition C2 now requires V to be nondecreasing. This implies

 that V has nonnegative subgradients whenever it is subdifferentiable. The

 rationalizability condition that we are using in the present section is therefore a

 slight modification of R( p) which takes this fact into account.

 R + ( p): The functions h: X -*> X and V: X - R are continuous and V is strictly
 concave and nondecreasing. For all x c X such that 8 V(x) 0 0 there exist Px C
 V(x) and qx c V(h(x)) such that px ? 0, qx ? 0, and sutch that (6) holds for all
 y E X.

 THEOREM 4: Let Xc R' be a compact, convex, and comprehensive set with

 nonempty interior. Moreover, let h: X,- X and V: X,- R be two given functions.
 (a) If (h, V) can be rationalized by an optimization problem (12, U, p) on X such

 that B1, B2, A3, and A4 are satisfied and such that there exists (x, y) c f2 with
 y >> 0, then condition R + ( p) holds.10

 (b) If there exists p c (0, 1) such that (h, V) satisfies R+( p), then one can
 rationalize (h, V) by a dynamic optimization problem satisfying B1, B2, A3,
 and A4.

 PROOF: (a) The proof is almost identical to the one of Theorem 1. Note that
 the separation argument guaranteeing the existence of the subgradient qx does

 not rely on the continuity of the utility function. The requirement that there

 exists (x, y) c Q with y >> 0 replaces the assumption that U x E x Qx has
 nonempty interior (see Al). The fact that V is nondecreasing allows one to

 deduce that both px and qx are nonnegative vectors.
 (b) The general idea of the proof is the same as for Theorem 2 (only Step 1

 and Step 2 are required). The details are a little bit different, though.

 STEP 1: Let D be the convex hull of the graph of h. Since X is compact and

 h is continuous, it is straightforward to show that D is compact. Now define

 2={(x,y)IxcX,ycX,3(X,y)cDsuchthat x2xand0?y< y}.

 Since X is comprehensive we have 0 c X and (0, h(O)) c D. Together with the
 definition of Q2 this implies (0, 0) c Q2. Closedness and convexity of Q2 are
 immediate consequences of compactness and convexity of D. The monotonicity

 requirements for ?2 are easily verified so that Bi follows. Since V and h are
 continuous functions it follows that V(z) - pV(h(z)) is continuous with respect
 to z (=X. Because X is compact, the number

 (13) M= min{V(z) - pV(h(z)) Iz cX}

 is a well defined and finite real number. For every z c int X we define the

 function F;: R'l x 1R -1 R by (9) where p, ? 0 and q, ? 0 are the subgradients

 10The notation y >> 0 means that all components of the vector y e DR" are strictly positive.
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 of V whose existence is ensured by R+( p) and the interiority of z. We claim

 that F,(x, y) ? M holds for all z E int X and all (x, y) E ?2. To prove the claim
 consider any fixed pair (x, y) E ?2. There exists a pair (x., y5) E D such that x ? x-
 and 0 <y <?y. Moreover, because D is the convex hull of the graph of h, it
 follows that there exist nonnegative real numbers A1, A2,..., Am and elements
 X1, X2,...,x X~ of X such that "L' 1Ai = 1 and YL" 1Ai(xi, h(xi))= (x, y). Since
 p, ? 0 and qz ? 0 we have

 in

 (14) pzx - pqzy pzx- - pqzy = Ai[pzxi - pqzh(xi)].
 i== 1

 Using R+( p) we obtain

 V(h(z)) - V(h(xi)) + qz[h(xi) - h(z)]

 < (/p)[V(z) - V(xi) +pZ(xi -Z)]

 for all i. This inequality can be rewritten as

 V(xi) - pV(h(xi)) < V(z) - pV(h(z)) + [pzxi - pqzh(xi)]

 + [ pqzh(z) -pzz].

 Multiplying this inequality by Ai and summing over all i, we get
 in

 E Aj[V(xi) - pV(h(xi))]
 i=l

 rn

 <V(z) - pV(h(z)) + E Ai[ pzxi - pqzh(xi)]
 i=1

 + [ pqzh(z) -pzz].

 Using this together with (13) and (14), it follows that

 m

 M?< Aj[V(xi) - pV(h(xi))] < V(z) - pV(h(z)) + (pzx - pqzy)
 i=l1

 + [ pqzh(z) -pzz] = Fz(x, y).

 Thus we have proved that Fz(x, y) ? M for all z E int X and all (x, y) E ?2. Now
 define U(x, y) = inf{Fz(x, y) I z E int X}. From this definition and from the facts
 we have already proved it follows that M < U(x, y) < Fz(x, y) for all (x, y) E ?2
 and all z E int X. Since Fz is bounded on ?2, it follows that U is bounded, too.
 Because U is the infimum of affine functions it is concave and upper semi-con-
 tinuous. It remains to verify the monotonicity properties required in B2. To this

 end note that pz and qz are nonnegative vectors. This implies that Fz(x, y) is
 nondecreasing with respect to x and nonincreasing with respect to y. These
 monotonicity properties of Fz are obviously inherited by U such that the
 verification of B2 is complete. Assumption A3 holds trivially.
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 STEP 2: Continuity of h and V as well as strict concavity and monotonicity of

 V hold by assumption R+( p). The property h(x) E !2x for all x ( X holds by
 construction of ?2. Thus Cl and C2 of Proposition 2 are satisfied. It remains to

 verify C3. We first consider the case x E int X and then the case where x is a

 boundary point of X.

 STEP 2(a): If x E int X, then the verification of (4) and (5) is identical with
 Step 2 in the proof of Theorem 2.

 STEP 2(b): Let x be a boundary point of X and let y E f2,. Furthermore, let
 x E int X and Y E Q. For every A E (0,1) define xA= (1-A)x + Ax and YA =
 (1 - A)y- + Ay. Convexity of f2 implies that (x,, yA) D2. Moreover, we have
 XA E int X for all A E (0, 1) and limA 1 1(xA, YA) = (x, y). From Step 2(a) we know
 that

 (15) U(x,, YA) + pV(yA) < V(xA) = U(xA, h(xA)) + pV(h(xA))

 for all A - (0, 1). Continuity of V and h implies that limAA V(xA) = V(x) and

 limA,, lV(yA) = V(y). Upper semi-continuity and concavity of U show that
 limA,, U(xA, YA) = U(x, y) (see, e.g., Corollary 7.5.1 in Rockafellar (1970)). In the
 limit as A approaches 1, the inequality on the left-hand side of (15) implies
 therefore that

 (16) V(x) > U(x, y) + pV(y)

 holds. Continuity of V and h and upper semi-continuity of U imply furthermore

 that V(h(x)) = limA,, lV(h(xA)) and U(x, h(x)) > lim supA,, lU(xA, h(xA)). Thus, in
 the limit as A approaches 1 the equation on the right-hand side of (15) yields

 (17) V(x) < U(x, h(x)) + pV(h(x)).

 From (16) and (17) it follows immediately that (5) holds. The right-hand side of
 (16) is a strictly concave function with respect to y which attains its maximum

 over f2x at a unique point y. Since we know from (17) that this point is y = h(x)
 the strict inequality must hold in (16) for all y E Q2x that are different from
 h(x). This establishes (4). We have therefore verified conditions C1-C3 of
 Proposition 2 and it follows that (?2, U, p) satisfies A4 and that (h, V) is its
 solution. Q.E.D.

 Theorem 4 shows that R+( p) is almost a necessary and sufficient condition
 for the rationalizability of a pair (h, V) by a dynamic optimization problem
 satisfying Bi, B2, A3, and A4. There is only one additional requirement in the
 necessity part of the theorem, namely that there exists (x, y) E ?2 such that
 y >> 0. This condition, however, is satisfied by any dynamic optimization problem
 (?2, U, p) which rationalizes (h, V) provided that h is nondegenerate. The
 following lemma makes precise what we mean by nondegenerate.11

 We denote the ith component of a vector z E IR'1 by Z(i), that is, z = (Z(1), Z(2), . I Z(n))
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 LEMMA 1: Let X c R' be a compact, convex, and comprehensive set with
 nonempty interior and let h: X -> X be a given function. Assume that for every

 E {1, 2, ... ., n} there exists xi E X such that h( )(xi) > 0 and that h is rationalized by
 a dynamic optimization problem (QX, U, p) satisfying B1, B2, A3, and A4. Then it
 follows that there exists (x, y) E Q such that y >> 0.

 PROOF: By assumption we must have (xi, h(xi)) E n for all i E {1, 2, . . ., n}.
 Since l2 is a convex set it follows that (x, y) = (1/n)L7E1(xi, h(xi)) D Q. Be-
 cause h(xi) ? 0 and h(i)(xi)> 0 for all i, it follows that y(i) > h(i)(xi)/n > 0.
 Therefore, we have y >> 0 and the proof is complete. Q.E.D.

 In the optimal growth context, the assumption that for all i there exists xi
 such that h(i)(xi) > 0 means that every good is actually produced in some state.
 It does not necessarily imply that there exists a state in which all goods are

 produced simultaneously. As an application of Theorem 4 let us consider the

 standard aggregative model of optimal growth. This is a dynamic optimization

 model (D, U, p) on X satisfying Bi, B2, A3, and A4 such that the following is
 true: n = 1, X = [0, b] for some b> 0, and there exists (x, y) e Q with y> 0.
 We now show that a pair (h, V) can be rationalized by a standard aggregative
 model of optimal growth if and only if R+( p) holds.

 THEOREM 5: Let X = [0, b] with b > 0 and let h: X a-> X and V: X a-> R be
 given functions. There exists a standard aggregative model of optimal growth with
 discount factor p E (0,1) that rationalizes (h, V) if and only if condition R+( p)
 holds.

 PROOF: (a) Assume that (h, V) can be rationalized by a standard aggregative
 model of optimal growth (D, U, p). Since all the conditions of Theorem 4a are
 satisfied, it follows that R+( p) holds. (b) Assume that (h, V) satisfies R+( p) for
 some p E (0, 1). We consider two cases.

 CASE 1: If h(x) = 0 for all x -X, then there exists z int X such that
 h(z) = 0. Since z is in the interior of X we know that V is subdifferentiable
 at z. Condition R+( p) then implies that V is also subdifferentiable at h(z) = 0.
 Thus, there exists a nonnegative number q such that

 (18) V(y) < V(O) + qy

 for all y E X\ {O}. Now define n = X x X and U(x, y) = V(x) - p[V(O) + qy ].
 Assumption Bi is obviously satisfied and so is the additional requirement that
 there exists (x, y) E Q with y > 0. The utility function U is continuous and
 concave and, since q is nonnegative and V is nondecreasing, U is nondecreasing
 with respect to x and nonincreasing with respect to y. Thus, B2 is satisfied.
 Assumption A3 holds trivially. To show that (Q, U, p) rationalizes (h, V) it is
 therefore sufficient to verify the conditions of Proposition 2. Cl and C2 follow
 immediately from R+( p). Condition C3, on the other hand, is a simple conse-
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 quence of the definition of U, the inequality in (18), and h(x) = 0. Thus,

 Proposition 2 implies that A4 holds and that (X, U, p) rationalizes (h, V).

 CASE 2: If there exists x E X and h(x) > 0, then the result follows immedi-

 ately from Theorem 4b and from Lemma 1. Q.E.D.

 5. CONCLUDING REMARKS

 In this paper we have derived necessary and sufficient conditions for a pair of

 functions to be the optimal policy function and the optimal value function of a

 dynamic optimization problem satisfying the standard assumptions of optimal

 growth theory. We have also demonstrated that the gap between the necessary

 and the sufficient condition is very small, and how it can be completely elimi-
 nated if one imposes free disposal and monotonicity assumptions.

 Most of the rationalizability conditions for dynamic optimization problems
 that are available in the literature can easily be derived from our conditions.
 Our results can also be used to derive tight discount factor restrictions for the

 occurrence of complicated dynamics in optimization models. The first contribu-

 tion in this direction came from Sorger (1992) and the most powerful results
 obtained so far are those by Mitra (1996b), Montrucchio and Sorger (1996), and
 Nishimura and Yano (1996).12 Two examples that have been considered by

 many contributors to this literature are the logistic map h 1(x) = 4x(1 - x) and
 the tent map h2(x) = 1 - 12x - 11, both defined on the unit interval. These maps
 are standard examples of chaotic dynamics. Using the rationalizability condi-
 tions of the present paper it is possible to prove that h1 can be rationalized by a

 model (D, U, p) satisfying A1-A6 if and only if p E (0, 1/16], and that h2 can be
 rationalized by a model (D, U, p) satisfying A1-A4 if and only if p E (0,1/4].
 For proofs of these results and several other applications of the conditions

 derived in the present paper we refer to Mitra and Sorger (1997).
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